Carborane Complexes of Nickel and Platinum: Synthesis and Protonation Reactions of Anionic Allyl(carborane) Species?

Nicholas Carr, Donald F. Mullica, Eric. L. Sappenfield, and F. Gordon A. Stone'

Department of Chemistry, Baylor University, Waco, Texas 76798-7348

Received November *24. I993@*

Reaction of Na₂[nido-7,8-Me₂-7,8-C₂B₉H₉] with $[Ni_2(\mu - Br)2(\eta^3 - C_3H_5)2]$ or $[Pt_2(\mu - Br)2(\eta^3 - C_3H_5)2]$ in thf (tetrahydrofuran) gives the anionic species $[M(\eta^3-C_3H_5)(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)]$ ⁻ (M = Ni or Pt) which have been isolated as their $[NEt_4]^+$ and $[N(PPh_3)_2]^+$ salts **1a-1d**. In the presence of suitable substrate molecules (L = CO or CNBu^t), protonation (HBF₄·Et₂O) of the reagents 1 at low temperatures gives the neutral compounds [ML₂-(\$-7,8-Me2-7,8-C2B9Hg)] **(2a,** M = Ni, L = CO; **2b,** M = Ni, L = CNBut; **2c,** M = Pt, L = CO; **Zd,** M = Pt, L = CNBut). Dichloromethane solutions of the dicarbonylnickel complex **2a** slowly decompose through loss of carbon monoxide to give a mixture of the isomeric dimetal species $[Ni_2(CO)_2(\eta^{5-7},8\text{-Me}_2\text{-}7,8\text{-}C_2B_9H_9)_2]$ (3a), $[Ni_2(CO)_2(\eta^{5-7},8\text{-Me}_2\text{-}7,8\text{-}C_2B_9H_9)(\eta^{5-2},7\text{-}Me_2\text{-}2,7\text{-}C_2B_9H_9)]$ **(3b)**, and $[Ni_2(CO)_2(\eta^{5-2},7\text{-}Me_2\text{-}2,7\text{-}C_2B_9H_9)_2]$ **(3c).** The molecular structure of **3c,** in which the carborane CMe groups of both cages occupy vertices in different layers of the g5-C2Bg nido-cages, was established by X-ray diffraction. Crystals are monoclinic, space group *C2/c* (No. 15), with $a = 21.498(5)$ Å, $b = 7.722(2)$ Å, $c = 14.962(3)$ Å, $\beta = 98.21(2)$ °, and $Z = 4$. Each nickel atom is ligated [N₁₂(CO)₂(η ²-7,8-Me₂-7,8-C₂B₉H₉)(η ²-2,7-Me₂-2,7-C₂B₉H₉)] (3b), and [N₁₂(CO)₂(η ²-2,7-Me₂-2,7-C₂B₉H₉)₂] (3c).
The molecular structure of 3c, in which the carborane CMe groups

displays pronounced nonplanarity. **In** addition, the metal-metal vector is spanned by two three-center, two-electron B-H-Ni "agostic" interactions. Treatment of a CH₂Cl₂ solution of $[N(PPh_3)_2][Pt(\eta^3-C_3H_5)(\eta^5-7,8-Me_2-7,8-Ne_3)]$ $C_2B_9H_9$] (1d) with HBF₄·Et₂O at ca. -78 °C followed by addition of the alkyne PhC=CH affords the dimetal species $[Pt_2\{\mu-\sigma,\sigma';\eta^4-C(H)C(H)C(H)C(H)\}(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)$ (4), the structure of which has been established by X-ray diffraction. Crystals are triclinic, space group \overline{PI} (No. 2) with $a = 13.317(2)$ Å, $b = 16.783(4)$ \hat{A} , $c = 17.289(4) \hat{A}$, $\alpha = 64.94(2)^\circ$, $\beta = 83.31(2)^\circ$, $\gamma = 78.58(2)^\circ$, and $Z = 4$. Two alkyne molecules have coupled in a "head-to-tail" manner to give a bridging " C_4 " moiety that is σ -bonded to one of the metal centers through the two terminal carbon atoms and q4-bound to the second metal center. **In** addition, each platinum atom is ligated by a 7,8-Me₂-7,8-C₂B₉H₉ carborane cage bound in a pentahapto manner, with neither cage involved in exopolyhedral bonding. Protonation (HBF₄·Et₂O) of **1a** in CH₂Cl₂ followed by addition of $[C_0_2(CO)_8]$ affords the trinuclear metal complex $[Co_2Ni(\mu-CO)(CO)_5(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)]$ **(5)**, in which the NiC₂B₉ metallacarborane cage forms two exopolyhedral B-H-Co "agostic" interactions. **In** addition to the X-ray diffraction studies, the new compounds have been characterized by microanalysis, ¹H, ¹³C, and ¹¹B NMR spectroscopy, and infrared spectroscopy.

Introduction

We have described the synthesis of salts of the anionic allyl- (carborane)molybdenum and -tungsten complexes $[M(CO)₂(\eta³-))$ $C_3H_5(\eta^5 - 7, 8-R_2 - 7, 8-C_2B_9H_9)$ ⁻ (M = Mo or W; R = H or Me), and have shown them to be useful reagents for the preparation of novel mononuclear compounds of these group 6 metals.' The success of this approach lies in the ease with which the allyl ligand can be released as propene by treating the salts with acid. The coordinatively unsaturated (carborane)metal species thereby generated can be captured by the addition of suitable reagents.

By employing similar methodology we have developed a somewhat general synthetic route to carborane complexes of the group 10 metals. Previous preparative routes to such species have, in general, relied **on** reactions of the dianions [nido-7,n- $R_2 - 7, n-C_2B_9H_9]^2$ ⁻ ($n = 8$ or 9; R = H or Me) with suitable metalhalide complexes² and on reactions of zerovalent complexes of the group 10 metals with carboranes. 3 Although these methodologies have led to the characterization of many interesting

compounds, the types of species obtained have been somewhat limited by the availability of suitable metal precursors.

Results and Discussion

Addition of a thf (tetrahydrofuran) solution of $Na_2[nido-7,8-$ Me₂-7,8-C₂B₉H₉] {generated *in situ* from [NHMe₃][7,8-Me₂-7,8-C₂B₉H₁₀] and NaH} to a solution of $[Ni_2(\mu-Br)_2(\eta^3-C_3H_5)_2]$ in the same solvent held at -50 °C, followed by addition of a suitable salt, affords the species $[Y][Ni(\eta^3-C_3H_5)(\eta^5-7,8-Me_2-$ 7,8-C₂B₉H₉)] [1a, $Y = NEt_4$; 1b, $Y = N(PPh_3)_2$]. The analogous platinum species $[Y][Pt(\eta^3-C_3H_5)(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)]$ [1c, $Y = NE_{4}$; **1d**, $Y = N(PP_{13})_{2}$ may be similarly obtained from $Na_2[$ *nido-7*,8-Me₂-7,8-C₂B₉H₉] and $[Pt_2(\mu-Br)_2(\eta^3-C_3H_5)_2]$. Data characterizing the new metallacarborane salts **la-ld** are given in Tables 1-3. Thus, in the 'H NMR spectrum of **la,** the methylene hydrogen atoms of the allyl group give rise to two doublet resonances at 6 2.22 and 2.7 1, while the methine hydrogen

^{*} To whom correspondence should be addressed.
[†] In the compounds described in this paper *[nido-7,8-Me₂-7,8-C₂B₉H₉]²⁻* anions form *closo-* 1,2-dicarba-3- and *closo-* **1,4-dicarba-2-metaIlacarborane** structures. Use of this numbering scheme, however, results in a complex and confusing nomenclature for the polynuclear metal complexes reported. We have therefore chosen to treat the cages as **nido-11** vertex ligands with numbering as for an icosahedron from which the 12th vertex has been removed.

⁸ Abstract published in *Aduance* ACS *Abstracrs,* March 15, 1994. (1) (a) Dossett, *S.* J.; Li, *S.;* Stone, F. G. **A.** *J. Chem.* **Soc.,** *Dalton Trans.* 1993, 1585. (b) Dossett, *S.* J.; Li, *S.;* Mullica, D. F.; Sappenfield, E. L.; Stone, F. G. A. *J. Chem. SOC., Dalton Trans.* 1993, 3551. (c) Li, *S.;* Stone, F. G. **A.** *Polyhedron* 1993, *12,* 1689.

^{(2) (}a) Miller, **S.** B.; Hawthorne, M. F. *J. Chem.* **SOC.,** *Chem. Commun.* 1976,786. (b) Hawthorne, M. F.;Young,D. C.;Andrews,T. M.; Howe, D. V.; Pilling, R. L.; Pitts, A. D.; Reintjes, M.; Warren, L. F., Jr.; Wegner, P. **A.** *J. Am. Chem.* **SOC.** 1968, *90,* 879. (c) King, R. E., **111;** Miller, S. B.; Knobler, C. B.; Hawthorne, M. F. Inorg. *Chem.* 1983,22, 3548. (d) Colquhoun, H. M.; Greenhough, T. J.; Wallbridge, M. G. H. J. Chem. Soc., Dalton Trans. 1985, 761. (e) Baghurst, D. R.; Copley, R. C. B.; Fleischer, H.; Mingos, D. M. P.; Kyd, G. O.; Yellowlees, L. J.; Welch, A. J.; Spalding, T. R.; O'Connell, D. J. Organomet. Chem. 1993, *447,* C14.

⁽³⁾ Stone, F. G. A. J. Organomet. Chem. 1975, 100, 257; Barker, G. K.;
Green, M.; Stone, F. G. A.; Wolsey, W. C.; Welch, A. J. J. Chem. Soc.,
Dalton Trans. 1983, 2063, and refs. therein.

Table 1. Physical and Infrared Absorption Data

 a Calculated values in parentheses. b Formed as a mixture of three isomers (see text).

Table 2. Hydrogen-1 and Carbon-13 NMR Data^a

^a Measurements at ambient temperatures in CD₂Cl₂ unless otherwise stated, with J values in Hz. $\frac{b}{2}$ Hydrogen-1 decoupled, chemical shifts are positive to high frequency of SiMe₄. ^c Measured in C₆D₆. ^d Mixture of three isomers (see text).

Table 3. Boron-11 NMR Data^a

 α Measurements at ambient temperatures in CD₂Cl₂ unless otherwise stated. Hydrogen-1 decoupled. Chemical shifts (ppm) are positive to high frequency of BF₃·Et₂O (external). Coupling constants are in Hz. Resonances ascribed to more than nucleus may result from overlapping signals and do not necessarily indicate symmetry equivalence. b Measured in C_6D_6 . *C* Mixture of three isomers (see text).

 (H_m) appears as a triplet-of-triplets at δ 4.74. The two doublet signals can be assigned to the *anti*- and syn -protons (H_{anti} and H_{syn}), respectively, since the doublet separation of the former $[J(H_{\text{anti}}H_{\text{m}}) = 11.5 \text{ Hz}]$ is larger than that of the latter $[J(H_{\text{syn}}H_{\text{m}})]$ = 6.2 Hz].^{1,4} In the ¹³C{¹H} NMR spectrum of **1a**, signals at δ 52.0 (CH₂) and 93.7 (CH) are due to the η^3 -C₃H₅ ligand. The

CMe groups of the carborane cage give rise to a singlet resonance at δ 1.71 in the ¹H NMR spectrum and two signals at δ 25.9 (CMe) and 57.3 (CMe) in the $^{13}C_{1}^{1}H_{1}^{1}NMR$ spectrum, as expected. The NMR resonances for 1d were similarly assigned.

Treatment of carbon monoxide saturated solutions of [NEt₄]- $[Ni(\eta^3-C_3H_5)(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)]$ (1a) in CH₂Cl₂ at -60 °C with the acid HBF4.Et2O affords the neutral compound [Ni- $(CO)_{2}(n^{5}-7.8-Me_{2}-7.8-C_{2}B_{9}H_{9})$ (2a). This species is difficult

Lee, S. S.; Knobler, C. B.; Hawthorne, M. F. Organometallics 1991, 10, (4) 1054.

to isolate pure due to the lability of the carbonyl ligands which are slowly lost from both solutions of the compound and from the solid material *in uacuo,* as discussed in more detail later. The analogous platinum species $[Pt(CO)₂(\eta⁵-7,8-Me₂-7,8-C₂B₉H₉)]$ **(2c)** was similarly obtained from **IC,** and is somewhat more stable toward loss of CO. It has been previously prepared and characterized by Graham and Krentz,⁵ who obtained it by displacement of cyclo-1,5-octadiene in $[Pt(cod)(\eta^5-7,8-Me_2-7,8 C_2B_9H_9$] with CO under pressure, a reaction that is readily reversed, and also by treating $[PtCl₂(CO)₂]$ under a CO atmosphere with **Tl[closo-l,2-Me2-3,1,2-TlCzB9Hg].** The dicarbonyl species **2a** and **2c** each show two CO absorptions in their infrared spectra **(2a,** 2113 and 2081 cm-I; **2c,** 2119 and 2080 cm-I) and the 13C{IH) NMR spectra (Table **2)** show a single resonance (with 195Pt satellite peaks for **2c)** at *ca.* **6** 180 due to the two carbonyl ligands. As expected, the equivalent CMe groups of the carborane cage give rise to two signals in the ^{13}C ^{[1}H] NMR spectra and one resonance in ¹H NMR spectra (Table 2). The ^{11}B ^{[1}H} NMR spectra (Table 3) consist of five separate signals. The most deshielded signal in the spectrum of **2c** (at δ 15.6) can be ascribed to the unique β -boron atom in the NMR spect
) consist of f
the spectrum
ron atom in t
CCBBB, on t

open pentagonal face of the carborane cage, CCBBB, **on** the basis of it having the largest coupling to the 195Pt nucleus. By analogy, the resonance at δ 11.8 in the spectrum of 2a is due to the analogous boron atom. Although these signals are relatively deshielded for boron atoms not involved in additional exopolyhedral bonding,⁶ this would appear to be a feature common to these neutral species (see Table 3).

Protonation of the reagents **1a** and **1d** at -70 °C, followed by addition of *ca.* 2 molar equiv of CNBu^t, gives $[Ni(CNBu^t)₂(\eta⁵-)$ 7,8-Me₂-C₂B₉H₉)] (2b) and $[Pt(CNBu^t)_2(\eta^5-7,8-Me_2-7,8-$ CzBgHg)] **(2d),** respectively, both of which display two NC absorptions **(2b,** 2197 and 2178 cm-1; **2d,** 2207 and 2180 cm-I) in their infrared spectrum. Compound **2d** has been synthesized by Graham and Krentz⁵ by treating $[Pt(cod)(\eta^5-7,8-Me_2-7,8 C_2B_9H_9$] with an excess of CNBu^t. The ligated carbon atoms of the CNBut ligands of **2b** give rise to a triplet resonance at *6* 137.1 in the ${}^{13}C{}_{1}{}^{1}H{}_{3}$ NMR spectrum due to coupling to the quadrupolar ¹⁴N nucleus $[J(NC) = 18 \text{ Hz}]$.⁷ Similarly, a triplet resonance at δ 127.7 with ¹⁹⁵Pt satellite peaks [$J(PtC) = 1450$ Hz] in the spectrum of **2d** is due to the CNBut nuclei.

The isomeric palladium complex $[Pd(CNBu^t)_2(\eta^5-7,9-Me_2-$ 7,9- $C_2B_9H_9$] has previously been prepared by insertion of the zerovalent palladium complex $[Pd(CNBu^t)_2]$ into the carborane **closo-2,3-Me2-2,3-CzB9H9.*** In this latter species, however, the two carborane CMe vertices in the coordinated pentagonal belt of the cage are separated by a BH vertex.

It is interesting to note that neither of the compounds **2b** and **2d** show any sign of decomposition after prolonged periods in solution under a nitrogen atmosphere or under vacuum. In contrast, carbon monoxide is slowly (days) released from $CH₂$ -C12 solutions of the dicarbonyl complex **2a** to afford an inseparable mixture of the isomeric dimetal species $[Ni_2(CO)_2(\eta^5-7,8\text{-Me}_2 7,8-C_2B_9H_9$ ₂] **(3a),** $[Ni_2(CO)_2(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)(\eta^5-2,7-Ne_2+2,8-C_2B_9H_9)$ $Me₂-2,7-C₂B₉H₉$] **(3b)**, and $[Ni₂(CO)₂(\eta⁵-2,7-Me₂-2,7-C₂B₉H₉)₂$ **(3c).** The structures of the species **3** were not fully established until after an X-ray diffraction study **on** one of the isomers **(3c)** had been carried out. An ORTEPview of the molecular structure is shown in Figure 1 and selected bond distances and bond angles are collected in Table 4. It is immediately apparent that the cage CMe groups present in **3cdo** not occupy the same relative positions

Figure 1. Structure of $[Ni_2(CO)_2(\eta^5 \text{-} 2,7 \text{-} Me_2 \text{-} 2,7 \text{-} C_2 B_9 H_9)_2]$ (3c). Thermal ellipsoids are **shown** at **40%** probability level.

as in the precursor **2a,** but nevertheless occupy adjacent vertices. The 3,1,2-NiCzBg polyhedral skeleton present in **2a** has therefore been transformed to a 2,1,4-NiC₂B₉ arrangement in complex 3c. The nickel to cage boron atom distances range from 2.083(11) to 2.157(10) **A,** but the Ni-C(1) distance [2.325(8) A] is appreciably longer. Polyhedral distortions of this type where the carbon atoms in the open face of the carborane ligand have moved away from the metal atom and toward the upper pentagonal belt are a common structural feature of electron-rich metallacarboranes.9 For comparison, the four Pt-B distances in the complex $[Pt(PMe₂Ph)₂(\eta⁵-2,8-Ph₂-2,8-C₂B₉H₉)]$ lie in the range 2.199-2.231 **A,** while the platinum to carbon cage distance [2.610(5) A] is much greater.2e The Ni.-Ni separation [2.744(2) A] in **3c** is long and is probably indicative of little if any direct metalmetal bonding. This distance should be compared with those in

⁽⁵⁾ Graham, W. A. *G.;* Krentz, R. Unpublished results. See: Krentz, R. Ph.D. Thesis, University of Alberta, **1989.**

⁽⁶⁾ Brew, S. **A.;** Stone, F. *G.* A. *Adv. Organomef. Chem.* **1993, 35, 135. (7)** Cronin, D. L.; Wilkinson, J. R.; Todd, L. J. *J. Magn. Reson.* **1975,** *17,* Stone, F. **G. A.** *Adv. Organomef. Chem.* **1990.31, 53.**

^{353.}

⁽⁸⁾ Green, M.; Spencer, J. L.; Stone, F. *G.* A,; Welch, A. J. *J. Chem. SOC., Dalton Trans.* **1975, 119.**

^{(9) (}a) Carroll, W. E.; Green, M.; Stone, F. G. A.; Welch, A. J. J. Chem.
Soc., Dalton Trans. 1975, 2263. (b) Welch, A. J. J. Chem. Soc., Dalton *Trans* **1975, 1473.** (c) Mingos, D. M. P.; Forsyth, M. I.; Welch, A. J. J. *Chem. SOC., Dalton Trans.* **1918, 1363.**

 $Ni-C(5)$

2.157 (**10) 1.692(14) 1.675(13) 1.786(16) 1.750(10)**

Table 4. Selected Internuclear Distances (\hat{A}) and Angles (deg) for $[Ni_2(CO)_2(\eta^5-2,7-Me_2^2-2,7-C_2B_2H_9)]$ (3c), with Estimated Standard **Deviations in Parentheses**

Ni-B(2) Ni(a)-B(4) B(4)-B(5) $B(7)-B(8)$ **B(4)-H(4)**

the compounds $[Ni_2(\mu\text{-CO})_2(\eta^5\text{-}7,8\text{-}C_2B_9H_{10}\text{-}10\text{-}PPh_3)_2]$ [2.477-(2) $\rm \AA$ ^{2c} and $\rm [Ni_2(\mu\text{-}CO)_2(\eta\text{-}C_5H_5)_2]$ [2.357(1) $\rm \AA$],¹⁰ both of which have a formal Ni-Ni single bond spanned by two carbonyl ligands. Consideration of the electron count at the metal centers in **3c** would also imply **no** direct metal-metal bonding, since both metals attain an 18-electron count without the need to invoke a Ni-Ni bond. In addition to the carborane cage, the nickel atoms carry a terminal carbonyl group [Ni-C(5) 1.750(10) **A,** Ni- $C(5)$ -O(5) 175.2(9)^o]. The two "(η ⁵-2,7-Me₂-2,7-C₂B₉H₉)Ni-(CO)" moieties are therefore held together by two $B-H\rightarrow Ni$ "agostic" interactions, which involve boron atoms that are situated oup $[N1-C(3)]$
wo "(n^5-2 ,7-
held togeth
volve boron a

 β to the carbon atom of the CBBBB face ligating the metal.

The spectroscopic data **on** the material obtained from this decomposition reaction of the complex **2a** are consistent with the presence of two other species, in addition to **3c.** It seems likely that the formation of **3c** proceeds via loss of a carbon monoxide molecule followed by dimerization of the resultant carboranenickel-carbonyl fragment, with isomerization of the cage CMe groups occurring after the CO group is lost. We interpret the spectroscopic data as being due to the formation of all three of the isomers possible by combination of the two fragments " $(n^5$ - $7,8-Me_2-7,8-C_2B_9H_9)$ Ni(CO)" and "(η ⁵-2,7-Me₂-2,7-C₂B₉H₉)-Ni(CO)", namely the symmetric compounds $3c$ and $[Ni_2(CO)_2(\eta^5-$ 7,8-Me2-7,8-C2BsHg)z] **(3a),** and the asymmetric compound $[Ni_2(CO)_2(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)(\eta^5-2,7-Me_2-2,7-C_2B_9H_9)]$ (3b). Thus the H NMR spectrum of the mixture (Table 2) shows eight signals of equal intensity due to the cage CMe groups of the three isomers and a broad resonance at δ -3.85 ppm for the protons of the $B-H \rightarrow Ni$ linkages. The methyl groups of the asymmetric compound **3b** will all be in different spatial environments irrespective of which boron atoms are involved in the B-H-Ni bonds and hence, four of the methyl resonances are due to this species. Two of the remaining four methyl signals are due to the symmetric species 3c, having the 2,1,4-NiC₂B₉ arrangement, and so the remaining two signals must be due to the other symmetric compound **3a.** This strongly implies that it nals are
NiC₂B₉
: due to
s that it
CCBBB

is the boron atom that is in the site α to the carbon of the CCBBB ring of the $3,1,2$ -NiC₂B₉ nickelacarborane moiety in **3a** that is involved in the $B-H\rightarrow Ni$ three-center, two-electron interactions. For a structure involving the β boron atoms, the four cage CMe groups would be expected to be equivalent and hence give rise to only one methyl group signal. The ¹³C{¹H} NMR spectrum of the mixture (Table 2) shows five cage CMe resonances because some.of the signals are coincident. **In** addition, two very broad resonances are observed at δ 184.2 and 185.2 for the carbonyl ligands. These groups give rise to two absorptions at 2100 and 2094 cm-1 **in** the infrared spectrum. **In** accord with the lH NMR data, a broad doublet resonance at δ 7.0 [J(HB) = 75 Hz] due to the boron nuclei of the $B-H \rightarrow Ni$ linkages is observed in the proton-coupled ¹¹B NMR spectrum (Table 3).

Although relatively uncommon, facile polytopal rearrangements of the kind occurring in the transformation of **2a** into **3b** and 3c, namely 3,1,2-MC₂B₉ to 2,1,4-MC₂B₉, have been previously observed for the "sandwich" compounds $[M(\eta^5-7,8-Me_2-7,8-$

2.098(11) Ni-B(3) 2.261(11) C(1)-B(2)
1.845(16) **B**(5)-C(1) 1.845(16) B(5)-C(1)
1.748(17) B(8)-B(9) 1.748(17) **B**(8)-**B**(9)
1.09 **Ni-C(5)**

Figure 2. Structure of $[Pt_2\{\mu-\sigma,\sigma';\eta^4-C(H)C(Ph)C(H)C(Ph)\}(\eta^5-7,8-V_1^2]$ **Me2-7,8-C2B9H9)2] (4). Thermal ellipsoids are shown at 40% probability level.**

 $C_2B_9H_9$)₂] (M = Ni or Pd) and thoroughly studied.¹¹ It is interesting to note that the ratio of the three isomers of **3** formed in this work $(3a:3b:3c = 1:2:1$, estimated from relative peak intensities in the ¹H NMR spectrum) is independent of the reaction time. This would seem to imply that the cage rearrangement occurs prior to formation of the $B-H\rightarrow Ni$ bonds.

Protonation of the platinum reagent **Id,** followed by addition of one or more mole equivalents of the terminal alkyne $PhC = CH$, affords the red crystalline diplatinum complex $[Pt_2\{\mu-\sigma,\sigma';\eta^4-\sigma'\}$ $C(H)C(Ph)C(H)C(Ph)$ $(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)_2$ **(4).** Although

it was evident from the NMR spectral data for **4** that a diplatinum species had been formed, it was impossible to elucidate how the alkyne was bonded to the two metal centers. Crystals of **4** suitable for study by X-ray diffraction were therefore grown. The molecular structure is shown in Figure 2, and selected bond distances and bond angles are collected in Table 5. The compound crystallized with two crystallographically independent but chemically very similar molecules in the asymmetric unit. Discussion of the structure will therefore be limited to only one of these molecules. Each platinum atom is ligated by a $7,8-Me₂-7,8-Me₂$

^(1 1) Warren, L. F., Jr.; Hawthorne, M. F. *J. Am. Chem. SOC.* **1970,92,1157. Callahan, K. P.; Hawthorne, M. F.** *Adu. Orgunomer. Chem.* **1976,** *14,* **145.**

Table 5. Selected Internuclear Distances (A) and Angles (deg) for $[Pt_2\mu - \sigma, \sigma';\eta^4 - C(H)C(Ph)C(H)C(Ph)\{(\eta^5 - 7,8-Me_2 - 7,8-C_2B_2H_9)\}$ (4) (Molecule 1), with Estimated Standard Deviations in Parentheses

	$Pt(1) - Pt(2)$	2.782(1)	$Pt(1)-C(1)$	2.262(21)	$Pt(1)-C(2)$	2.241(19)	$Pt(1)-B(3)$	2.154(32)	
	$Pt(1)-B(4)$	2.194(25)	$Pt(1) - B(5)$	2.192(21)	$Pt(2) - C(11)$	2.235(20)	$Pt(2)-C(12)$	2.328(26)	
	$Pt(2) - B(13)$	2.309(30)	$Pt(2) - B(14)$	2.160(24)	$Pt(2) - B(15)$	2.241(20)	$Pt(1) - C(21)$	2.170(16)	
	$Pt(1) - C(22)$	2.244(19)	$Pt(1) - C(23)$	2.260(18)	$Pt(1)-C(24)$	2.330(15)	$Pt(2) - C(21)$	2.023(22)	
	$Pt(2) - C(24)$	2.062(15)	$C(21) - C(22)$	1.401(27)	$C(22) - C(23)$	1.474(23)	$C(23) - C(24)$	1.441(33)	
	$C(22) - C(31)$	1.463(34)	$C(24)-C(41)$	1.355(22)					
	$Pt(1)-C(21)-Pt(2)$		83.1(7)	$Pt(1)-C(24)-Pt(2)$	78.3(5)		$Pt(1)-C(22)-C(31)$	127.2(12)	
	$Pt(1)-C(24)-C(41)$		124.5(13)	$Pt(2) - C(21) - C(22)$	116.8(12)		$C(21) - C(22) - C(23)$	112.0(19)	
	$C(22)$ - $C(23)$ - $C(24)$		116.0(16)	$C(23)-C(24)-Pt(2)$	112.2(11)		$C(24) - Pt(2) - C(21)$	80.2(7)	
	$C(21) - C(22) - C(31)$		125.4(15)	$C(23) - C(22) - C(31)$	122.6(17)		$C(23)-C(24)-C(41)$	120.3(15)	
	$Pt(2)-C(24)-C(41)$		127.3(15)						
$C_2B_9H_9$ nido-cage bound in a pentahapto manner, with the					FeC ₄ ferracyclopentadiene ring occur at δ 181.1 and 150.1 and				
coordinated CCBBB faces of the two cages showing much less							at δ 113.2 and 131.6, respectively. ¹⁷ The bridging CH group		
							give rise to two doublet resonances $[J(HH)] = 2.7$ Hz) at δ 6.8		

deviation from planarity than was observed in the structure of the complex **3c.** Interest centers around the bonding of the fouratom carbon fragment spanning the two metal centers. Clearly two PhC=CH molecules have linked in a "head-to-tail" manner and are bridging the two metal centers. While Pt(1) is bound in a tetrahapto manner to all four of the carbon atoms in the bridging group [Pt(l)-C(21) = 2.170(16) **A,** Pt(1)-C(22) = 2.244(19) Å, Pt(1)–C(23) = 2.260(18) Å, and Pt(1)–C(24) = 2.330(15) A], Pt(2) is bound only to the two terminal atoms C(21) and C(24), and at distances $[Pt(2)-C(21) = 2.023(22)$ Å and $Pt(2)-C(24) = 2.062(15)$ Å] appreciably shorter than those between Pt(1) and these two atoms (Table *5).* Furthermore, the four carbon atoms of the bridging group and the metal atom Pt(2) are coplanar [maximum deviation from the plane 0.12 *8,* for $C(21)$], with Pt(1) situated in the face of this plane and situated 1.88 *8,* from it. Within the four-atom chain the bond length between the two central carbon atoms $[C(22)-C(23) 1.474(23)$ Å] is slightly longer than the two other distances $[C(21)-C(22)]$ $= 1.401(27)$ Å and C(23)–C(24) = 1.441(33) Å]. The structure of **4** is therefore most closely related to those of the complexes $[Fe_2(\mu-\sigma,\sigma';\eta^4-C_4H_4)(CO)_6]^{12}$ and $[W_2H(\mu-CPh)(\mu-\sigma,\sigma';\eta^4-C_4 Me₄$)(O-*i*-Pr)₄],¹³ rather than the dichromium complex [Cr₂(μ - $C_4Ph_4(CO)(\eta^5-C_5H_5)_2$.¹⁴ An X-ray diffraction study on the latter revealed that the α -carbon atoms of the C₄ chain are essentially symmetrically bonded to the two metal atoms, so that the bridge system is best described as a bis $(\mu$ -alkylidene). In both the diiron and the ditungsten species, the C_4M (M = Fe, W) ring is essentially planar, as it is 4. In contrast, the C₄Cr ring in $[Cr_2(\mu-C_4Ph_4)(CO)(\eta^5-C_5H_5)_2]$ is distinctly nonplanar, the chromium atom in the ring being situated 0.51 **A** away from the plane defined by the four carbon atoms.14 The Pt-Pt distance in **4** [2.782(1) A] is shorter than those observed in the compounds $[Pt_2(\mu\text{-}PhC_2SiMe_3)(cod)_2]$ [2.914(0) Å]¹⁵ and $[Pt_3(\mu\text{-}PhC_2Ph)_2$ - $(PEt₃)₄]$ [2.904(1) Å],¹⁶ both of which have alkyne ligands transversely bridging the metal centers and little, if any, direct metal-metal bonding. Consideration of the electronic configurations of the Pt atoms in **4** suggests that the Pt(1)-Pt(2) interaction is best viewed as a $Pt^0(d^{10}) \rightarrow Pt^{2+}(d^8)$ unit.

In the 13C(IH} NMR spectrum of **4** (Table 2) the signals due to the α -carbon atoms of the PtC₄ ring occur at δ 144.1 (CPh) and 110.6 (CH), while those due to the β -carbons occur at δ 142.4 (CPh) and 119.3 (CH). These shifts compare well with those of the structurally related species $[Fe_2(\mu \cdot \sigma,\sigma';\eta^4-C(H)C (Ph)C(H)C(Ph)$ {CO)₆], for which the α - and β -carbons of the FeC₄ ferracyclopentadiene ring occur at δ 181.1 and 150.1 and at δ 113.2 and 131.6, respectively.¹⁷ The bridging CH groups give rise to two doublet resonances $[J(HH) = 2.7 Hz]$ at δ 6.83 and 7.73 in the 1H NMR spectrum. The remainder of the NMR data is as expected.

Having established that the compounds **1** are useful sources of the reactive species " $M(\eta^5-C_2B_9H_9Me_2)$ ", it was of interest to see if they could be used to prepare polynuclear metal complexes containing heteronuclear metal-metal bonds. Preliminary studies in this area suggest that this is indeed so. Thus, treatment of a CH_2Cl_2 solution of $[NEt_4] [Ni(\eta^3-C_3H_5)(\eta^5\text{-}7,8\text{-}Me_2\text{-}7,8\text{-}C_2B_9H_9)]$ (1a) with $HBF_4·Et_2O$ at $-60 °C$, followed by addition of 1 molar equiv of $[Co_2(CO)_8]$, affords the trinuclear metal complex $[Co_2 Ni(\mu\text{-CO})(CO)_{5}(\eta^{5} - 7,8-\text{Me}_{2} - 7,8-\text{C}_{2}B_{9}H_{9})$] (5), which has been characterized by elemental analysis and infrared and NMR spectroscopy. Thus, the infrared spectrum has a CO absorption at 2086 cm-1, which we ascribe to the NiCO group, and a broad absorption at 1833 cm^{-1} due to the carbonyl ligand bridging the Co-Co bond. Other absorptions in the infrared spectrum at 2054, 2047 , and 2026 cm⁻¹ are assigned to the terminal CoCO groups. The appearance of a sharp signal at δ 188.9 in the ¹³C{¹H} NMR spectrum (Table 2) confirms the presence of the terminal carbonyl group bound to nickel. The cobalt carbonyls give rise to two very broad signals at δ 234.1 and 195.9, even at low temperatures, suggesting that these groups are undergoing site exchange at the two cobalt centers. Two relatively deshielded resonances at δ 22.0 $[J(HB) = 94 \text{ Hz}]$ and 14.9 $[J(HB) = 98 \text{ Hz}]$ in the ¹¹B NMR spectrum (Table 3) are due to the boron atoms of the B-H-Co linkages. Correspondingly, these groups give rise to a broad resonance at δ -6.20 in the ¹H NMR spectrum. The remainder of the NMR spectral data is in accord with the postulated structure.

Conclusions

The new carborane complexes of nickel and platinum described in this paper suggest that the allyl(carborane) metal reagents 1 could prove to be excellent precursors to both mononuclear and polynuclear metallacarborane complexes of the group 10 metals that would be difficult to prepare by existing methods. **As** far as we are aware, the mode of bonding of the C_4 chain present in complex **4** has not previously been observed for the late transition metals. Further studies in this area are underway.

Experimental Section

GeneralConsiderations. Solvents were distilled from appropriatedrying agentsunder nitrogen prior to use. Petroleum ether refers to that fraction of boiling point 40-60 °C. All reactions were carried out under an atmosphere of dry nitrogen using Schlenk-line techniques. Chromatography columns *(ca.* 15 cm in length and *ca.* 2 cm in diameter) were packed with either alumina (Brockmann activity **11)** or silicagel (Aldrich, 70-230 mesh). The compounds $[Pt(\eta^2-C_7H_{10})_3]^{18}$ and $[Ni_2(\mu-Br)_2(\eta^3 C_3H_3$)₂]¹⁹ were prepared as previously described. The acid $HBF_4·Et_2O$ was used as supplied by Aldrich Chemical Co. as an 85% solution in

(19) Fischer, E. 0.; Burger, G. *Z. Naturforsch, B* 1961, *16,* 77.

⁽¹²⁾ Dettlaf, **G.;** Weiss, E. J. *Organomet. Chem.* 1976, 108, 213.

⁽¹³⁾ Chisholm, M. H.; Eichhorn, B. W.; Huffman, J. C. *Organometallics*

^{1989, 8, 61.} (14) (a) Knox, S. A. R.; Stansfield, R. F. D.; Stone, F. G. A.; Winter, M. J.; Woodward, P. J. Chem. Soc., Dalton Trans. 1982, 173. (b) Bradley, J. S. J. Organomet. Chem. 1978, 150, C1.

⁽¹⁵⁾ Boag, N. M.; Green, M.; Howard, J. A. K.; Stone, F. G. A.; Wadepohl, H. J. Chem. Soc., Dalton Trans. 1981, 862.
(16) Boag, N. M.; Green, M.; Howard, J. A. K.; Spencer, J. L.; Stansfield,

R. F. D.; Thomas, M. D. *0.;* Stone, F. **G. A.;** Woodward, P. J. *Chem. SOC., Dalton Trans.* 1980, 2182.

⁽¹⁷⁾ Aime, **S.;** Milone, L.; Sappa, E. J. *Chem. SOC., Dalton Trans.* 1976,838.

⁽¹⁸⁾ Crascall, L. E.; Spencer, J. L. *Inorg. Synrh.* 1990, 28, 126.

Table 6. Crystallographic Data^a

	Зc	4
cryst dimens/mm	$0.10 \times 0.20 \times 0.61$	$0.23 \times 0.33 \times 0.51$
formula	$C_{10}H_{30}B_{18}Ni_2O_2$	$C_{24}H_{42}B_{18}Pt_2$
М.	494.35	915.38
cryst color, shape	green rectangle	red prism
cryst system	monoclinic	triclinic
space group	$C2/c$ (No. 15)	$P\bar{1}$ (No. 2)
a/A	21.498(5)	13.317(2)
b/A	7.722(2)	16.783(4)
c/À	14.962(3)	17.289(4)
α /deg		64.94(2)
β /deg	98.21(2)	83.31(2)
γ /deg		78.58(2)
V/\AA	2458.2(9)	3420.1(12)
z	4	4
$d_{\rm calcd}$ / g cm ⁻³	1.338	1.778
$\mu(\rm Mo~K\alpha)/cm^{-1}$	15.47	82.75
F(000)/e	1008	1728
2θ range/deg	$3 - 40$	$3 - 40$
T/K	292	292
no. of reflons measd	2611	6734
no. of unique reflons	1141	6361
no. of obsd reflcns	1012	5527
criterion for obsd n	$n = 4$	$n = 4$
$[F_0 \geq n\sigma(F_0)]$		
$R(R)^b$	0.0854(0.0857)	0.0588(0.0707)
final electron density	$1.69/-1.16$	$3.37f/-1.95$
diff features		
$(max/min)/eA^{-3}$		
S (goodness-of-fit)	1.31	1.45

a Data collected on an Enraf Nonius CAD4-F automated diffractometer operating in the ω -2 θ scan mode (h, 0 to 20; k, 0 to 7; l, -14 to 14 for 3c. $h, 0$ to 12; $k, -15$ to 16; $l, -16$ to 16 for 4); graphite-monochromated Mo K α X-radiation, $\bar{\lambda} = 0.71073$ Å. Refinement was by a block-fullmatrix least-squares method on F with a weighting scheme of the form $w^{-1} = [\sigma^2(F_0) + g|F_0|^2]$ (g = 0.0064 for 3c, g = 0.0058 for 4), where $\sigma_c^2(F_o)$ is the variance in F_o due to counting statistics. $^b R = \sum ||F_o|$ - $|F_c||/\Sigma|F_o|$, $R' = \Sigma w^{1/2}||F_o|-|F_c||/\Sigma w^{1/2}|F_o|$. ^c Located ca. 3 Å from nearest atom.

Et₂O. The NMR spectra were recorded at the following frequencies: ¹H at 360.13 MHz, ¹³C at 90.56 MHz, and ¹¹B at 115.55 MHz.

Synthesis of $[Pt_2(\mu-Br)_2(\eta^3-C_3H_5)_2]$.²⁰ In this work the compound was prepared as follows. Allyl bromide (0.20 mL, 2.30 mmol) was added in three portions to a solution of $[Pt(\eta^2-C_7H_{10})_3]$ (0.96 g, 2.01 mmol) in petroleum ether (30 mL), allowing time for the allyl bromide to react before the next addition. After addition of the allyl bromide was complete, the mixture was rapidly stirred for 30 min. The bright yellow precipitate was then allowed to settle, the supernatent liquid was removed with a syringe, and the powder was washed with petroleum ether $(2 \times 10 \text{ mL})$. Yield 0.60 g (94%).

Synthesis of the Reagents $[Y][M(\eta^3-C_3H_5)(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)]$ $[Y = NEt_4$ or N(PPh₃)₂; M = Ni or Pt]. (i) A solution of Na₂[nido-7,8-Me₂-7,8-C₂B₉H₉] {generated from [NHMe₃][7,8-Me₂-7,8-C₂B₉H₁₀] (0.79 g, 3.60 mmol) and NaH (0.70 g of a 60% dispersion in mineral oil, washed with 2×20 mL of thf) at reflux temperature for 12 h} in thf (30 mL) was slowly added to a solution of $[Ni_2(\mu-Br)_2(\eta^3-C_3H_5)_2]$ (0.70 g, 1.94 mmol) in thf (5 mL) held at -50 °C. After the mixture was vigorously stirred for 1 h, it was warmed to 0 °C and stirring was continued for a further 12 h. Solid [NEt₄]Cl-H₂O (0.66 g, 3.6 mmol) was then added and the mixture allowed to warm to room temperature. Volatile materials were removed in vacuo, the residue was extracted with CH_2Cl_2 (30 mL), and the extracts were filtered through a Celite pad (ca. 5 cm depth). The volume of solvent was then reduced in vacuo to ca. 10 mL. Petroleum ether was added to give a brown precipitate, which was washed with petroleum ether $(2 \times 15 \text{ mL})$ and dried in vacuo for ca. 24 h to give [NEt₄][Ni(η^3 -C₃H₅)(η^5 -7,8-Me₂-7,8-C₂B₉H₉)] (1a) as a very dark brown powder (0.88 g). The $[N(PPh_3)_2]^+$ salt is obtained in an identical manner employing [N(PPh₃)₂]Cl in place of [NEt₄]Cl-H₂O.

(ii) Similarly, a thf (25 mL) solution of Na2[nido-7,8-Me₂-7,8-C₂B₉H₉] (2.08 mmol) was slowly added to solid $[Pt_2(\mu - Br_2(\eta^3 - C_3H_5)_2]$ (0.67 g,

Table 7. Atomic Positional Parameters (Fractional Coordinates X 10⁴) and Equivalent Isotropic Displacement Parameters ($A^2 \times 10^3$) for the Unique Atoms of 3c

atom	x	у	z	U (eq) ^a
Ni	577(1)	533(1)	7209(1)	33(1)
C(1)	1464(4)	$-1181(12)$	7587(5)	31(3)
B(2)	1496(6)	948(14)	7858(8)	41(4)
B(3)	842(5)	1592(13)	8543(7)	39(4)
B(4)	384(5)	$-327(15)$	8460(7)	41(4)
B(5)	775(5)	$-1940(12)$	7820(7)	32(3)
B(6)	1966(6)	$-564(14)$	8531(8)	49(5)
B(7)	1599(5)	1018(16)	9088(7)	46(4)
B(8)	929(5)	121(16)	9446(8)	38(4)
B(9)	827(5)	$-2017(12)$	8993(8)	37(4)
C(10)	1478(4)	$-2355(10)$	8475(7)	42(3)
B(11)	1583(6)	$-1162(16)$	9459(7)	50(4)
C(2)	1747(4)	$-1909(13)$	6801(6)	51(4)
C(3)	1741(5)	$-4188(12)$	8486(8)	58(4)
C(5)	631(5)	2420(12)	6576(7)	51(4)
O(5)	676(4)	3736(11)	6213(5)	77(3)

 a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

1.06 mmol) at -60 °C. The resulting mixture was rapidly stirred at this temperature for 4 h and then at -10° C for a further 12h. Solid [N(PPh₃)₂]-Cl (1.20 g, 2.09 mmol) was then added, and the mixture was warmed to room temperature over a period of ca. 1 h. Solvent was removed in vacuo, the residue was extracted with CH_2Cl_2 (30 mL), and the extract was filtered through a Celite pad (ca. 5 cm depth). The volume of solvent was reduced in vacuo to ca. 10 mL and petroleum ether (40 mL) was added to give a brown oil from which the solvent was decanted. The oil was washed with Et_2O (2 × 15 mL) and dried in vacuo at ca. 25 °C for ca. 24 h to give $[N(PPh_3)_2][Pt(\eta^3-C_3H_5)(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)]$ (1d) as a brown powder $(1.64 g)$. The [NEt₄]⁺ salt was prepared in an identical manner employing [NEt₄]Cl-H₂O in place of [N(PPh₃)₂]Cl, but is generally obtained as a slightly impure oil.

Protonation Reactions. (i) The salt [NEt₄] [Ni(η ³-C₃H₅)(η ⁵-7,8-Me₂-7,8-C₂B₉H₉)] (1a) (0.60 g, 1.54 mmol) was dissolved in CH₂Cl₂ (50 mL), and the mixture was cooled to ca. -60 °C and saturated with CO gas. The acid HBF₄-Et₂O (240 μ L, 1.53 mmol) was added, and the resulting solution was rapidly stirred at this temperature for 1 h and then slowly (ca. 1.5 h) allowed to warm to room temperature, affording a brown solution. After this was allowed to stand at room temperature for ca. 0.5 h, the CO source was removed, volatile materials were removed in vacuo, and the residue was extracted with CH_2Cl_2 -petroleum ether $(1:4, 50 \text{ mL and then } 3 \times 10 \text{ mL})$. The extracts were filtered through a Celite pad (ca. 5 cm depth) and the solvent volume was reduced in vacuo to ca. 5 mL to yield a mixture of brown $[Ni(CO)₂(\eta^5-7,8-Me₂-\alpha)]$ 7,8-C₂B₉H₉)] (2a) and a purple impurity (combined yield 0.33 g). An analytically pure sample of 2a was obtained by extracting this mixture with cold (ca. 0 °C) petroleum ether (2 \times 2 mL) and cooling the solution thus obtained at ca. -30 °C for ca. 16 h. $\nu_{max}(CO)$ in n-hexane was 2113 vs, 2081 s cm⁻¹. This species is unstable both in solution and in the solid-state, decomposing to the aforementioned purple compound and 3.

(ii) Similarly, a CH₂Cl₂ (15 mL) solution of [NEt₄][Pt(n^3 -C₃H₅)- $(\eta^5 - 7, 8 - Me_2 - 7, 8 - C_2B_9H_9)$ (1c) (0.26 g, 0.50 mmol) was cooled to ca. -78 °C and saturated with CO gas. The acid HBF₄.Et₂O (76 μ L, 0.48 mmol) was added, and the solution was warmed to room temperature over a period of ca. 1 h. Volatile materials were removed in vacuo, the residue was extracted with CH_2Cl_2 -petroleum ether (1:4, 20 mL), and the extracts were filtered through a Celite pad (ca. 4 cm depth). The resulting solution was evaporated to dryness and the residue was washed with petroleum ether $(2 \times 2$ mL) to remove an orange impurity and leave $[Pt(CO)₂(\eta^5-7,8-Me₂-7,8-C₂B₉H₉)]$ (2c) was a brown powder (0.13 g). Recrystallization from cold (ca. -30 °C) petroleum ether gave brown microcrystals. $v_{\text{max}}(\text{CO})$ in *n*-hexane was 2119 vs, 2080 s cm⁻¹.

(iii) The salt $[NEt_4][Ni(\eta^3-C_3H_5)(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)]$ (1a) (0.22 $g, 0.56$ mmol) was dissolved in CH_2Cl_2 (15 mL), the solution was cooled to ca. -70 °C and treated first with $HBF_4 \cdot Et_2O$ (90 μL , 0.57 mmol) and then with CNBu^t (130 μ L, 1.15 mmol). After the resulting solution was allowed to warm to room temperature, volatile materials were removed in vacuo, the residue was extracted with CH_2Cl_2 -petroleum ether (3:1, 8 mL) and the extracts were transferred to the top of a chromatography column packed with alumina. Eluting the column with the same solvent mixture removed a green solution, the volume of which was reduced in vacuo until a green powder precipitated. Solvents were removed with a

^{(20) (}a) Mann, B. E.; Shaw, B. L.; Shaw, G. J. Chem. Soc. A 1971, 3536.
(b) Pietropaolo, R.; Dolcetti, G.; Giustiniani, M.; Belluco, U. Inorg.
Chem. 1970, 9, 549. (c) Lukas, J. H.; Blom, J. E. J. Organomet. Chem. 1971, 26, C25.

Table 8. Atomic Positional Parameters (Fractional Coordinates **X** 104) and Equivalent Isotropic Displacement Parameters (A2 **X** lo3) for **4**

molecule 1					molecule 2				
atom	\boldsymbol{x}	у	\pmb{z}	$U(\text{eq})^d$	atom	$\pmb{\chi}$	у	z	$U(\mathrm{eq})^d$
Pt(1)	2878(1)	3473(1)	6822(1)	32(1)	Pt(3)	824(1)	2181(1)	2157(1)	28(1)
C(1)	1562(15)	4086(13)	7454(12)	45(3)	C(51)	2320(17)	2510(14)	2304(13)	56(3)
C(2)	1219(16)	4073(13)	6613(12)	46(3)	C(52)	2359(15)	2308(12)	1481(12)	41(3)
B(3)	1613(19)	3006(19)	6567(16)	60(3)	B(53)	1341(15)	2891(13)	799(15)	35(3)
B(4)	2200(17)	2274(17)	7598(15)	51(3)	B(54)	510(16)	3639(14)	1341(14)	36(3)
B(5)	2257(19)	2991(14)	8142(14)	43(3)	B(55)	1259(16)	3301(13)	2306(14)	35(3)
B(6)	309(17)	4117(16)	7396(13)	38(3)	B(56)	3257(19)	2955(16)	1450(14)	50(3)
B(7)	320(20)	3465(16)	6848(17)	62(3)	B(57)	2530(18)	3190(16)	521(15)	50(3)
B(8)	854(22)	2390(19)	7416(18)	80(3)	B(58)	1447(18)	4011(16)	410(15)	46(3)
B(9)	1312(18)	2328(14)	8396(17)	64(3)	B(59)	1375(18)	4284(17)	1370(15)	50(3)
B(10)	946(16)	3411(13)	8349(16)	52(3)	B(60)	2484(19)	3579(17)	2008(14)	50(3)
B(11)	113(15)	3026(15)	7920(13)	52(3)	B(61)	2617(20)	4092(17)	853(16)	52(3)
C(3)	1800(17)	4902(14)	7530(15)	61(3)	C(53)	2815(17)	1840(15)	3112(13)	66(3)
C(4)	1168(15)	4993(14)	5799(14)	61(3)	C(54)	2869(15)	1436(14)	1447(14)	59(3)
C(21)	4508(12)	3038(11)	7034(11)	28(3)	C(71)	$-554(14)$	1984(13)	2901(11)	34(3)
C(22)	4318(12)	3939(12)	6892(11)	27(3)	C(72)	162(14)	1329(11)	3448(11)	32(3)
C(31)	4523(15)	4292(12)	7490(12)	39(3)	C(81)	377(14)	1287(11)	4322(12)	55(3)
C(32)	4659(15)	3755(15)	8354(13)	54(3)	C(82)	$-49(15)$	2035(14)	4541(14)	48(3)
C(33)	4916(17)	4080(15)	8892(14)	58(3)	C(83)	211(17)	1950(16)	5336(12)	56(3)
C(34)	5114(16)	4936(16)	8554(13)	61(3)	C(84)	779(16)	1191(12)	5880(12)	45(3)
C(35)	5018(16)	5504(15)	7719(14)	52(3)	C(85)	1165(16)	488(14)	5663(14)	66(3)
C(36)	4663(14)	5168(14)	7188(12)	42(3)	C(86)	974(12)	536(10)	4869(10)	34(3)
Pt(2)	4491(1)	2765(1)	6003(1)	32(1)	Pt(4)	$-989(1)$	1745(1)	1937(1)	28(1)
C(11)	5190(15)	1329(13)	6423(13)	45(3)	C(61)	$-2499(15)$	2689(13)	1582(11)	41(3)
C(12)	4459(14)	1578(13)	5649(13)	44(3)	C(62)	$-1963(14)$	2620(12)	696(11)	34(3)
B(13)	4664(19)	2490(16)	4790(15)	50(3)	B(63)	$-1550(18)$	1496(16)	886(16)	49(3)
B(14)	5781(19)	2811(18)	5111(14)	57(3)	B(64)	$-1990(20)$	863(16)	1988(17)	56(3)
B(15)	6096(16)	2015(15)	6237(15)	46(3)	B(65)	$-2561(16)$	1641(17)	2419(14)	43(3)
B(16)	5402(18)	611(16)	5897(16)	54(3)	B(66)	$-3274(17)$	2954(16)	730(15)	42(3)
B(17)	5117(18)	1381(13)	4844(18)	65(3)	B(67)	$-2665(16)$	2182(16)	281(17)	47(3)
B(18)	5951(16)	2166(15)	4470(16)	57(3)	B(68)	$-2739(17)$	1103(15)	1061(14)	41(3)
B(19)	6750(21)	1936(18)	5321(20)	73(3)	B(69)	$-3334(16)$	1129(13)	2068(15)	39(3)
B(20)	6393(18)	979(16)	6171(15)	48(3)	B(70)	$-3660(17)$	2390(16)	1768(14)	40(3)
B(21)	6351(19)	1033(15)	5142(17)	57(3)	B(71)	$-3805(19)$	1942(16)	1027(16)	53(3)
C(13)	4889(18)	779(16)	7405(15)	71(3)	C(63)	$-2433(16)$	3517(12)	1719(13)	48(3)
C(14)	3327(16)	1337(14)	5833(14)	56(3)	C(64)	$-1393(16)$	3304(14)	63(13)	60(3)
C(23)	3870(13)	4516(12)	6055(12)	34(3)	C(73)	694(15)	737(12)	3105(11)	34(3)
C(24)	3767(13)	4075(11)	5519(10)	28(3)	C(74)	314(14)	832(12)	2304(11)	34(3)
C(41)	3319(13)	4542(9)	4755(10)	26(3)	C(91)	788(12)	292(12)	1880(9)	29(3)
C(42)	3473(13)	5406(10)	4280(11)	43(3)	C(92)	1151(16)	$-643(15)$	2402(14)	59(3)
C(43)	3049(16)	5919(14)	3470(14)	56(3)	C(93)	1606(15)	$-1283(12)$	2102(12)	42(3)
C(44)	2450(17)	5549(16)	3076(15)	63(3)	C(94)	1673(18)	$-984(11)$	1243(14)	70(3)
C(45)	2275(16)	4711(15)	3579(11)	62(3)	C(95)	1341(16)	$-105(10)$	719(13)	55(3)
C(46)	2707(14)	4232(14)	4367(10)	48(3)	C(96)	926(14)	525(12)	1013(9)	41(3)

Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized **Uij** tensor.

syringe, and the powder was dried *in vacuo* to give $[Ni(CNBu^t)_2(\eta^5-dS_1)]$ 7,8-Me2-7,8-CzBgHg)] **(2b)** (0.1 1 g). vmax(NC) in CH2C12 was at 2197 s, 2178 **s** cm-I.

(iv) Employing $[N(PPh_3)_2][Pt(\eta^3-C_3H_5)(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)]$ **(1d)** (0.30 g, 0.32 mmol), $HBF_{4}Et_{2}O$ (50 μ L, 0.32 mmol), and CNBuⁱ (75 pL, 0.66 mmol) gave **[Pt(CNBut)2(q5-7,8-Me2-7,8-C2B9Hg)] (Zd)** (0.10 g) as a yellow powder, after column chromatography on alumina eluting with CH₂Cl₂-petroleum ether (1:1). $\nu_{max}(NC)$ in CH₂Cl₂ was at 2207 s, 2180 s cm⁻¹, as found by Graham and Krentz.⁵

(v) A CH₂Cl₂ (25 mL) solution containing $[N(PPh₃)₂][Pt(\eta³-C₃H₅)-$ **(q5-7,8-Me2-7,8-C2BgHg)] (Id)** (0.35 g, 0.37 mmol) was cooled to ca. -78 °C and treated with HBF_{4} -Et₂O (60 μ L, 0.38 mmol) immediately followed by PhC₂H (50 μ L, 0.46 mmol). The resulting solution was rapidly stirred while being warmed to room temperature, after which the volume of the solvent was reduced in vacuo to ca. 8 mL. The mixture was then filtered through a short (ca. 6 cm) alumina pad. The filtrate was adsorbed onto silica gel $(ca. 2 g)$ and transferred to the top of a chromatography column packed with silica gel. Eluting the column with $CH₂Cl₂$ -petroleum ether (2:7 increasing in polarity to 1:2) removed a red fraction which was reduced in volume in vacuo to ca. 5 mL to precipitate a red powder. This was crystallized from $CH₂Cl₂$ -petroleum ether (1:2, ca. 6 mL) at 0 °C to give red crystals of $[Pt_2\{\mu-\sigma,\sigma';\eta^4-C(H)C(Ph)C-H\rho'\}$ $(H)C(Ph)$ $(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)$ ₂] **(4)** $(0.06 g)$. Employing 2 molar equiv of the acetylene $PhC₂H$ afforded the same species in approximately the same yield.

(vi) The salt $[NEt_4][Ni(\eta^3-C_3H_5)(\eta^5-7,8-Me_2-7,8-C_2B_9H_9)]$ (1a) (0.12) g, 0.30 mmol) was dissolved in CH2C12 (1 **5** mL), the solution cooled to -60 °C and then treated with HBF₄·Et₂O (48 μ L, 0.31 mmol). The resulting purple solution was kept at this temperature for 5 min, [Co₂- $(CO)_{8}$] (0.10 g, 0.29 mmol) was then added, and the resulting solution was warmed to room temperature over a period of ca. **1** h. After the dark colored solution was rapidly stirred for a further 6 h, solvent was removed in vacuo, the residue was extracted with n-hexane, and the extracts were transferred to a silica gel chromatography column. Eluting the column with *n*-hexane removed a mauve fraction, which was reduced in volume in vacuo to ca. 5 mL and then cooled (ca. -20 °C) overnight to give mauve microcrystals of $[Co_2Ni(\mu\text{-}CO)(CO)_5(\eta^5\text{-}7,8\text{-}Me_2\text{-}7,8\text{-}C_2B_9H_9)]$ **(5)** (0.06 g). ν_{max} (CO) in *n*-hexane was at 2086 s, 2054 vs, 2047 vs, 2026 m, 1833 m cm-I.

Thermal Transformation of $[Ni(CO)_2(\eta^5 \cdot 7,8 \cdot Me_2 \cdot 7,8 \cdot C_2B_9H_9)]$ **(2a).** Freshly prepared **[Ni(C0)2(q5-7,8-Mez-7,8-C2BgH9)] (2a)** (0.25 g, 0.9 1 mmol) was dissolved in CH_2Cl_2 (20 mL), and the resulting brown solution was allowed to stand at ca. 25 °C for 3 days. Volatile materials were then removed in vacuo, the residue was extracted with $CH₂Cl₂$ -petroleum ether (1:2, 6 mL), and the extracts were transferred to a silica gel chromatography column. Eluting the column with the same solvent mixture removed a green solution, the volume of which was reduced in vacuo to ca. 5 mL. Cooling of this solution at ca. -30 °C gave green microcrystals of $[Ni_2(CO)_2(\eta^5-C_2B_9H_9Me_2)_2]$ (0.04 g), formed as a mixture of the three isomers **3a, 3b,** and **3c.** vmax(CO) in n-hexane was at 2100 and 2094 cm-I.

CrystalStructure Determinations and Refinements. Green rectangular crystals of $3c$ were obtained by prolonged cooling $(ca. -30$ °C) of a n-hexane solution containing a mixture of **3a, 3b,** and **3c.** Deep red

Carborane Complexes of Nickel and Platinum

crystals of **4** were grown by the slow diffusion of petroleum ether into a concentrated CH₂Cl₂ solution of the compound at *ca* 0 °C. The crystal data and other experimental parameters are given in Table 6. Final cell dimensions used for the data collection were determined from the setting angle values of *25* accurately centered reflections. The stability of the crystals during the period of the data collections was monitored by measuring the intensities of two standard reflections every 2 h. For compound **4,** a gradual decrease in intensity of the check reflections was observed (4.9% over the period of the data collection), and an appropriate decay correction was therefore applied. No significant decay was observed for **3c.** After deletion of the check intensity data, as well as the systematic absences, averaging of duplicate and equivalent measurements was performed and the data were corrected for Lorentz, polarization, and X-ray absorption effects. The absorption corrections were based on empirical methods.

The structures were solved by conventional heavy-atom methods to determine the metal atom positions and Fourier difference syntheses were used to locate all other non-hydrogen atoms, which were refined with anisotropic thermal parameters. Compound **4** crystallized with two crystallographically independent but chemically very similar molecules in the asymmetric unit. With the exception of the hydrogen atom H(4) of **3c,** all hydrogen atoms for both **3c** and **4** were included at geometrically

calculated positions (C-H = 0.96 Å and B-H = 1.10 Å)²¹ and allowed to ride on the parent carbon or boron atom with fixed isotropic thermal parameters $(U_{\text{iso}} = 80 \text{ and } 60 \times 10^{-3} \text{ Å}^2$, respectively). The atom H(4) was located in the difference Fourier syntheses and allowed to ride on the boron atom B(4) with a fixed isotropic thermal parameter $(U_{\text{iso}} = 60)$ \times 10⁻³ Å²). All calculations were performed using the SHELXTL-PC package of programs.22 Atomic scattering factors were taken from ref 23. Final atomic positional parameters for the non-hydrogen atoms of complexes **3c** and **4** are given in Tables 7 and **8,** respectively.

Acknowledgment. We thank the Robert A. Welch Foundation for support (Grants AA-1201 and 0668).

Supplementary Material Available: Complete tables of bond lengths and bond angles, anisotropic thermal parameters, and hydrogen atom parameters for **3c** and **4** (24 pages). Ordering information is given on any current masthead page.

- **(21)** Sherwood, **P.BHGEN,aprogramforthecalculationofidealizedH-atom** positions for a nido-icosahedral carborane cage. University of Bristol, **1986.**
- **(22)** Siemens(**1989).** SHELXTL-PC. SiemensX-ray Instruments, Madison, **WI.**
- **(23)** International Tables *for* X-ray Crystallography; Kynoch Press: Birmingham, U.K., **1974; Vol. 4.**